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Abstract-The problem of a piezoelectric body with an elliptic cavity is revisited within the frame
work of two-dimensional electro-elasticity. In contrast to our previous formulation, the present
analysis is based on the use of exact electric boundary conditions at the rim of the hole, thus avoiding
the common assumption of electric impermeability. Expressions for the elastic and electric variables
induced inside and outside the cavity are derived in closed form in terms of complex potentials.
Comparisons between present (exact) and previous (approximate) models are effected to establish
the limitations associated with the assumption of the impermeable hole, in particular when it
becomes a slit crack. Copyright :r; 1996 Elsevier Science Ltd

1. INTRODUCTION

The theme of the elliptic hole (and, in the limit, of the crack) embedded in an infinite body
made of piezoelectric material has been addressed by many authors in the recent past. The
problem has generated a wealth of different approaches and results, which for the most
part are still awaiting experimental verification. The topic has a motivation which is remote
from being purely academic. Indeed, the use of piezoelectric polymers and ceramics in
modern technology has induced researchers to investigate the mechanics of deformation
and failure of these materials. Two typical examples of applications are furnished by the
areas of electronic packaging and intelligent structures.

Phenomenological descriptions of piezoelectric solids with defects such as holes,
inclusions and cracks are mathematically difficult to develop due to two factors: electro
elastic coupling effects and material anisotropy. Thus, in an effort to minimize such diffi
culties, many authors have proposed alternative models based on assumptions regarding
defect orientation, nature of the applied loads and associated deformations and form of
the boundary conditions imposed at the defect's surface. Examples on this line of work are
the articles of Pak (1990, 1992a, 1992b) within the realm of anti-plane piezoelectricity, and
the more general studies of Deeg (1980), Sosa and Pak (1990), Shindo et al. (1990) Sosa
(1991,1992) and Suo et al. (1992).

Because of their practical relevance, the articles mentioned above were mainly con
cerned with transversely isotropic piezoelectric materials like poled ferroelectric ceramics
and crystals of the 6mm class. In addition, they were built upon the assumption of a void
(or crack) filled with gas (typically air or vacuum) and with its boundary free of forces and
electric surface charge. In electrostatics, at a surface separating two dielectric mediums, the
electric potential (or, alternatively, the tangential component of the electric field) and the
normal component of the induction vector are continuous. However, when one of the
mediums is air, these two conditions can be approximated simply by one, namely that the
normal component of the induction, as calculated in the other medium, vanishes at the
interface.* Regarding the boundary of a hole or crack as a surface separating non con
ducting matter from air, the aforementioned authors adhered to the impermeable assump
tion due to its much simpler mathematical treatment. However, the approximation has a
drawback: when the defect is a slit crack the electric field becomes singular at its tip.

* Hereafter such approximation will be referred to as the impermeahle approximation.
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First McMeeking (1989), within the framework of isotropic electrostriction, and
recently Dunn (1994), in terms of anti-plane piezoelectricity, have pointed out that the
singular behavior of the electric field at the tip of a sharp crack is an anomaly caused by
the impermeable assumption. In fact, they have found that the magnitude of the field
remains bounded by the permitivities of the piezoelectric material and gas enclosed by the
crack. The present article is devoted to a generalization of the results presented in these
two works by including material anisotropy (absent in the case of electrostriction) in a
plane where full electromechanical coupling takes place (a phenomenon which does not
manifest in anti-plane deformations). Therefore, we are revisiting the plane problem of
Sosa (1991) rejecting in this case the impermeable approximation. In the process, first, we
recover the results of McMeeking and Dunn; second, we show that the impermeable
formulation can be derived as a particular case of the exact model; and third we make
pertinent comparisons between both formulations.

The solutions here provided, together with those available for anti-plane deformations
seem to close the topic of a defect in a piezoelectric solid from a two-dimensional point of
view. More complete formulations (such as three-dimensional configurations or cracks with
arbitrary directions) have also been provided by some authors. In these cases, however, the
solutions do not have simple forms and tend to hinder the physical aspects involved in the
mechanical and electric failure of piezoelectric materials. It is probably at this stage where
numerical approaches become the only reasonable alternative.

2, REVIEW OF BASIC EQUAnONS

As in Sosa (1991) (hereafter referred to as HS) we effect a plane strain analysis of
transversely isotropic bodies referred to a Cartesian coordinate system XI' X 2. Denoting
by* 5ij' Tij, D; and £; the components of strain, stress, induction and electric field, respec
tively, the two-dimensional constitutive equations can be written in matrix form as

5 11 all a l 2 0 Til I 0
b

21
I

522 al2 a22 0 Tee + 0 b2e {~J
2512 0 0 a" T I2 IIh1 0

{£I} ,0 0
b~} II

Til

+ II C~I C~el: {~J£2 = -II bn b22

T 22

Tic

(I a)

(I b)

where aij' blj and c;; are the components of the reduced (or effective) elastic compliance,
piezoelectric and dielectric impermittivity (or impermeability) matrices, respectively,

We have shown in HS that mechanical and electrical fields arising in piezoelectric
bodies can be expressed in terms of three complex potentials CPk (as functions of three
complex variables Zk = XI + fJ.kXe) and their corresponding derivatives cP~ = dcpk/dzk' For
example:

3

T = 29f' L
k~1

¢ = - 29f' L KkCPk
k~1

(2a-d)

where T, D and E are the column vectors appearing in (I a~b), .:Jf {,} denotes the real part

* The reader is referred to section 2 of HS for a detailed account on the derivation of the relations given in
this section with the caution that some change in notation has taken place to follow standard texts on piezo
electricity like IEEE (1988) and Ikeda (1990).
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of the quantity within braces, and /1k are three complex roots (with positive imaginary
parts) satisfying the characteristic equation

Furthermore, in (2b-d)

(b 21 +b I3 )/12 +b22

C11/12 +C22

(3)

(4)

If the body does not exhibit piezoelectricity (or this is neglected) bij = 0, in which case
lek = /1k = 0 and the characteristic equation can be factored out into fourth and second
degree equations to find the roots associated with problems of elasticity and electrostatics.
It is also interesting to note that transversely isotropic bodies have such material symmetry
that: .~{/1d = j'Vd = .~{Kj} = 0, /13 = - {12, le3 = ~2 and K3 = - /(2, where j' {.} stands
for the imaginary part of the quantity enclosed in braces and the overbar indicates the
complex conjugate.

The determination of the complex potentials is constrained to boundary conditions of
mechanical and electrical type, which are discussed in the sequel within the realm of the
problem addressed in this article. Towards this end let the infinite piezoelectric body contain
an elliptic hole (of contour denoted by r and outward unit normal n) with major and minor
axes 2a and 2b along XI and X2, respectively. The cavity is assumed to be filled with a
homogeneous gas* of dielectric constant (or permittivity) Go, and is free of forces and
surface charge density. On the other hand, mechanical and electrical loads in the form of
forces, displacements, charge or voltages are applied to the body at remote distances. The
main purpose of the paper is to find expressions for the elastic and electric variables both
in the body and cavity, regions that we shall denote by 0 and 0" respectively. In the latter,
only electric variables DC and E' = - V¢c exist, which are found from the solution of
Laplace's equation for the electric potential ¢" that is

In turn, the electric displacement is found via the constitutive relation

Dc = GoE'

and its normal component is given by

D¢C
DC' n = -f;o -an

(5)

(6)

(7)

The boundary conditions must state that the hole is traction free and that on its
contour the normal component of the induction and the electric potential are continuous.
Thus

c¢'
D" = -f.Il-~-: on r

on

* In most cases we can consider that the gas is simply air or perhaps vacuum in which case
Eo = 8.85x 1O- llN/V2
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¢ = ¢' (8a-d)

where t l and t2 are the Cartesian components of the stress vector. In HS, conditions (8c)
and (8d) were approximated by the single equation D n = 0 (the so-called condition of
impermeability), based on the fact that the dielectric constants of a piezoelectric material
are much larger than the one of vacuum (in fact, for most ceramics they can be between
1000 and 3500 times larger). The point of departure in the present article is that such
simplification is not considered, and (8) is taken as such. We shall show, however, that by
setting Co = 0 in the expressions to be derived we can recover the results deduced in HS.

The analysis to follow requires the boundary conditions to be expressed in terms of
the complex potentials. We can show that (8) becomes

.'
2 L 9f{<pd = 0;
k~1

3

2 L 9f{flk<Pd = 0;
k~1

where ds is an element of arc length of r.

-¢' (9a-d)

3. A SOLUTION THROUGH CONFORMAL MAPPING

In our previous article (HS), the assumption of dealing with a hole impermeable to
electric fields had, as a consequence, the need for modelling only the region occupied by
matter. In the present work, the cavity is also modelled, which means that we are confronted
with a two-domain boundary-value problem much more difficult to solve in closed form
than the one addressed in HS. Again, conformal mapping is the fundamental tool used to
find the complex potentials. The region n (in the z-plane) is mapped onto the outside of
the unit circle (in the (-plane) by means of the function

(10)

which actually corresponds to three mappings, one for each ro~Themapping of n, is
done by considering a straight line r o along XI and of length 2,ja2 _b 2

• The region enclosed
by the ellipse excluding the line r o can be mapped onto the (-plane by the function

a+b a-hI
z = w«() = --(+ ---

. 2' 2 (
(11 )

by means of which rand r o transform into the ring of outer and inner boundaries y and
'ro, respectively, with parametric representations

where 8 is the angle measured over the circles in counter clockwise direction and the radii
have the values
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Fb
Po = ~;+b; p = I

3403

In turn, the boundary conditions must be expressed over the unit circle. As we shall
see in the next section, the left hand sides of (9) can be written in terms of holomorphic
functions, while evaluation of the right hand sides in the transformed domain is carried out
in the remaining part of this section.

To this end, we start by considering the electric potential inside the cavity, which can
be expressed as

(12)

where the function F(z) is analytic in the region between 1 0 and I, and which in the (
plane becomes

F(z) = <11(0 (13)

Moreover, anywhere inside the hole and along the line 1 0 the following condition must be
satisfied:

(14)

to ensure the field is single valued. Next, we consider the normal component of the induction
vector, which in terms of the electric potential is given by

[
Ccf>C ccf>c J -

Dnds = ~eo az n+ at n ds = -eo[j'(z)n+f'(z)n)ds

Furthermore, since, for any arbitrary circle of radius p

(15)

(16)

the following two conditions are derived for the normal and arc length of the curve 1:

. dz(p) w'CO ill

n = n l + 1l1
2 = Idz(p)1 = Iw'(OI e

and

ds(8) = Idz(8)1 = Iw'COlpd8

Using the relation

<11'( ~)
F(z) = -~~

w'(O

together with (15) and (18) when p = I yields

whose evaluation over the unit circle gives

(17)

(18)
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I'DI1 ds = - E~) ([<1>(0") -<1>(1)] - [<1>(0") -<1>(I)]}.
o I

(19)

We note that the constants <1>(1) and <1>(1) will be omitted from the rest of the discussion
since they do not contribute to either the components of stress or electric field.

4. DERIVATION OF THE COMPLEX POTENTIALS

The complex potentials are constructed by means of the series method. Towards this
end let them be expressed as*

(20)

where

are holomorphic functions up to infinity. Furthermore, let

x d x..

<1>(0 =2: y~1 +do+2: dp, for Po :::; 1'1 :::; I
I~ 1 ~ I~ I

whose coefficients can be related by means of (14) in the following manner:

(21 )

(22)

(23)

Substituting (10) and (20) in the left-hand side of (9) yields the boundary conditions
on the unit circle, namely

(24a-d)

where in the last two equations we have also used (12), (13) and (19), and the relations

3 3

/3 = - 2: a9f{CkAd + ib9f{Ck)'k,ud; /4 = - 2: a9f{ CkKd + ib9f{ CkKk,ud (25)
k~l k~1

A major step towards mathematical simplification is attained if (21 )-(23) are used in
(24d) to write the coefficients di as functions of /4, aki' Kk and Po, that is

• We note that (20) and (21) are the counterparts of (44) and (45) of HS.
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(26)

which, once substituted in (24c) together with (21) in (24a) and (24b), produces a new
system of three equations in the unknowns ak/:

3

L ak/ = bil/ l ;
k~1

3

L Ilk a ki = bo l2 ;
k~1

.,
L Akiaki + Kk/ik/ = bol;
k~1

(27)

where b'i is the Kronecker delta and

(28)

Now, since b/ 1 = 0 when j = 2, 3, the solution of (27) implies that all aki vanish,
provided the 6 x 6 matrix of the coefficients of ak/ and Qk/ is not singular. This condition is
equivalent to requiring that the determinant of the 2 x 2 matrix

does not vanish, where the entries are given by

Consequently, (27) is reduced to values of j = I only, becoming

(29)

3

I akl = II ;
k~1

3

L Ilk a kl = 12 :
k~1

3

L lok1 akl +KklQkl = 1',
k~1

(30)

where loki and Kki are particular cases of (28). Solving (30) yields

I
a21 =---[(1l1~1l3)a31+12~lll/d

112 -Ill

A,C,-BICI

with

(3 Ia--e)
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(32a--c)

being a consequence of (28) and (29) whenj = 1, and

b
rJ.=

a

J.l2 AI-J.ll)'2

J.l2 -J.ll

(33)

At this point we can verify that the results obtained so far include, as a particular case,
those of the impermeable model. Indeed, when 80 = 0 we find that

which gives

3

akl L Ak/ j

i= 1

where Akj and Ij are the coefficients appearing in (50) and (54) of HS.

5. ELECTRO-ELASTIC FIELDS IN THE MATERIAL

Using the results of the previous section the complex potentials reduce to

(34)

while their derivatives, by virtue of (10), become

(35)

which, by means of (2), detennine the electro-elastic variables up to the constants Ck that
must be found through the boundary conditions when Zk -> CD according to the following
procedure: by virtue of the constitutive equations used in this article, at infinity one can
prescribe stress and induction independently of each other, thus generating a system of five
equations for the six unknowns involved in the real and imaginary parts of the constants
Ck' As noted in HS we can, without loss in generality, set the imaginary part of one of these
constants equal to zero. Therefore, as before, we set .f{c d = O. Hence, under prescribed
values of stress T X and induction Ox, use of (2) and (35) when Zk -> CD yields
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(36a-b)

which once compared with (25) determine the "load parameters"

(37)

It should be noted that, as a result of the piezoelectric effect, an electric field is induced
by the applied load at remote distances in the material, whose value is obtained inserting
(36) in (lb) giving

(38)

which through comparison with (25) renders

(39)

That is, a model based on exact boundary conditions produces one more load parameter
than the impermeable model. The extra parameter, however, is not prescribed inde
pendently, but determined from the constitutive equations. To illustrate this point consider
the body subjected to a state of stress and induction of the form TOC = Toe2 ® e2 and
DX' = Doeb where e2 is the unit vector in x2-direction. As a consequence, strain and electric
field are induced at infinity whose components are calculated by means of (la) and (1b),
resulting in: Sf2 = a22 To + bnDo and Ef = - bn To + C22 Do (all other components being
equal to zero). That is, the body will deform not only because of the applied forces but also
due to the piezoelectric effect. Similarly, an electric field is not only the expected result from
the applied charges but also the consequence of deformations generated by the forces. In
this case the load parameters reduce to

-aTo
2

aDo
13 = -2-'

From an experimental point of view, it is much simpler to measure (or impose) an
applied voltage (from where we can calculate E) than the charge associated with D.
Therefore, suppose that the loading conditions are given by E OC = EOe2 • Hence, although
no forces are applied in this instance, the body will stretch or contract due to piezoelectricity
in the amount S22 = bnEo!cn, and the load parameters become

Finally, suppose that we stretch the body according to SX = Soe2® e2. As a result,
stresses are generated with values given by: Tfl = -aI2S0!(alla22-ar2), Tf2 =anSo!
(all an - ar 2) and Tf2 = O. Moreover, through electromechanical interaction, an electric
field is induced with components Ef = 0 and Ef = (b21a12 -bna22)So!(a1Ian -aL).
Hence. in this case
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I
_ -ib(b2I a I2 -b22 a22)SO

4 -

2(a ll an -a~2)

Naturally, combinations ofS Y and D J
, SJ and Ef or T" and EX can be worked out

in the same fashion.
Knowledge of the parameters Ii implies full knowledge of the constants Cb which, in

turn, allows us to fully determine any of the elastic and electric variables existing in matter.
In particular,

T = TX +2a' I
k~1

inQ

(40a-e)

where

(41 )

At this time it seems worthy to recapitulate the steps one needs to follow to find exact
expressions for the mechanical and electrical variables in Q. In a given problem, the input
consists of material properties, geometry of the ellipse, and loading conditions. The steps
to follow are: (a) calculate Ilb Ab Kb (X and h. (b) Calculate A], B I and C I using (32), where
we should notice that the first two are independent of the load. (c) Calculate a j ], a21 and
a31 using (31). (d) Substitute in (40) the results from the previous steps.

For practical purposes we also review the corresponding units of the various coefficients
involved in the present analysis. In the international system of units (with volts V, meters
m and Newtons N as fundamental units) they are: [A j ] = [Bd = m/V, [CI] = N/V,
[II] = [/2] = N/m, [13] = N/V, [/4] = V, [I.d = m/V, [Kk] = Vm/N, [akl] = N/m and Ilk non
dimensional.

The expressions given by (40) are in terms of Cartesian coordinates x j and X2 and are
valid everywhere in Q. Of particular interest are their expressions on r itself in terms of
components normal and tangent to the curve. This is achieved by introducing the following
change of variables:

(42)

where 0 ~ e< 2n is measured along r in counter clockwise sense. As a result, (41) becomes

(43)

In the Cartesian basis, the unit normal and tangent vectors to r are given by
n = nje l +n2e2 and s = -n2ej +n le2 where the components ofo are obtained from (II) and
(17) with ( = eiO, yielding
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CX cos 8+ i sin 8
fll+ifl2 =-----o (44)

On r the stress vector vanishes, thus Tn = 0, or equivalently, Tnn = Tn, = O. However,
a hoop stress can in general be induced, whose value is given by

A discussion concerning the behavior of this stress component for various values of cx is
relegated to the last section of the article.

Next, we turn our attention to the expressions for the electric variables on the curve
r. Of particular interest are the normal component of the induction and the tangential
component of the field. Using (40b) and (40c) one obtains

(46a)

and

(46b)

Equation (46b) is crucial to study the behavior of the field at the tip of a crack, which
is one of the main themes behind the motivation of this paper. Hence, consider the case
when the body is subjected to a load K" = EOe2 as a result, it can be shown that using (31)
(33) one obtains

3

I Kkakl = 2gc] I a, 1i,
k~1

a(c221 -Eo)aEo

2g(CXi' +2EOC]I)

where}' = fig is a real, positive number (typically in the range 1 < }' < 2). Thus, substituting
these results and (44) in (46b) yields

E,.(8) = (cx}'+2c11c:22
1
)Eocxcos8

(a}' + 2E OC]])0
(47)

Now it is clear that, if the analysis of the defect problem were based on the impermeable
model (i.e. when Eo = 0), the field would become singular when cx ---> 0 at the tip of the crack
(when f) = 0). However, if Eo is retained, in the limit of the sharp crack we have

(48)

That is, the field is bounded as predicted by McMeeking (1989) and Dunn (1994) through
alternative models. Nevertheless, from a practical point of view, this result offers small
consolation. Indeed, since for most ceramics EoC22 ~ 10-4

, it is clear that applied fields of
only 100 V1m can produce depoling of the material and, therefore, loss of the piezoelectric
effect.

Since it is most likely that in real situations a i=- 0, the natural question coming to mind
is: what are the limitations of the impermeable model so its results can be used with
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confidence? The answer is provided by (47). Keeping in mind that 'Y. ~ I, I < '( < 2, and
that for most ceramics C II Cl2

1
- 1 and CaCll - 10-4

, the following can be postulated: (I) if
'Y. » GaCI 1> then the impermeable and exact models provide virtually the same results. For
example, a slender ellipse with 'Y. = 10- 2 could be modelled reasonably well with the con
dition GO = O. (2) If r:t. - CaC,], then there are two competing factors to take into account in
the denominator of (47) and the limits G -> 0 and r:t. -> 0 should be taken in either sequence
to find the dramatic differences provided by both models as discussed before.

6. ELECTRIC FIELDS IN THE CAVITY

By using (12), (22) and (23) with) = 1, the expression for the electric potential inside
the cavity can be written as follows:

which after inverting (11) reduces to

from where, in turn, we can determine the components of the electric field, namely

2(d l +al )

a+b

E'; = _ 2i(d l -at)
- a+b

indicating that the electric field is uniform inside the hole. The quantities in parentheses
can be found explicitly, they are given by

Thus the electric field components in Q, become

(49a-b)

Verification of the conditions of continuity regarding the normal and tangential com
ponents of 0 and E, respectively, is another valid test to check the correctness of our results.
In Section 5 we found these components by approaching the boundary from Q. The same
components calculated by approaching r from Q, are given by
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(50a)

(50b)

Equations (46b) and (50b) show that E~ = E,. To verify that D~ = Dn one must use
(24c) in (46a). Notice also that D~ = 0 when eo = O.

The characteristics of the electric field within the void are illustrated by means of two
examples sharing the following result:

,
L Kkak] = 2gc]]a3]i-c]]h,lj.
k~]

(51)

Example I : Suppose that the body is subjected to voltages in x]- and x2-directions, that is,
the applied load is given by EX = Ef e] + EIe 2 • The load parameters become

and, by means of (32c),

Using this expression together with (32a-b) in (31 c) gives

a,] = a(c:!2] -eo)Cf.E 2' +ib(eo-c!]])Ef

2g(IXY + 2eOc]]) 2g(y + 2lJ(eoc] d

Further algebraic manipulations with (51) yields

(52)

where y = fig as before. Thus, extracting its real and imaginary parts one obtains

(53a-b)

First, we note that the case of the impermeable hole is obtained by setting eo = o.
Under such circumstance, it is clear that a field applied in xi-direction is not perturbed by
a crack, while a voltage applied in xrdirection yields a field singular everywhere within the
crack. Second, in the presence of a crack, E~ induces a field given by (48) since from
continuity E\(O) = E 2(a, 0). Third, for aspect ratios IX smaller than one but still larger than
eOe]] we deduce as before, that the results emanating from an exact or impermeable model
yield virtually the same results.
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Example 2 : Assume the body subject to a state of stress given by T~ = TOe2 ® e2, in which
case the loading parameters become

and

aTo
2 '

ab22 Tn
I, = ----,
- 2en

while

where hf = ~{hd,hi = Y'{hd, with similar definitions for h3 • Therefore, using (51)

which produces

(54a-b)

That is, a state of stress in xrdirection induces a field with components in both x l

and xrdirections. These components, however, not only are quite different in terms of their
magnitudes (for fixed values of:x and y E'I « E';J but also with respect to their behavior
when the hole becomes a slit crack under the conditions of impermeability. Clearly, E\ is
indifferent to the nature of the boundary conditions when:x = O. The same cannot be said
about E'7., which remains bounded in the case of a slit crack when exact electric boundary
conditions are enforced, and becomes singular if analyzed through the impermeable model.

7. ON STRESSES Il\iDUCED BY ELECTRIC FIELDS

One of the most interesting aspects concerning piezoelectric materials with cracks has
to do with the effects the electric field has on the stress distribution around a crack tip. We
note that (at least from a qualitative point of view), the fracture characteristics of cracked
piezoelectric solids subjected to purely mechanical loads can be described by fracture
mechanics concepts of anisotropic media (Sosa and Pak, 1990). That is, the asymptotic
expressions for stresses have the classical singularity 1/fi at the tip of the crack and the
functions reflecting the angular distributions are also functions of the material properties.

The case of a piezoelectric body subjected, in addition to mechanical forces, to remote
electric field has consequences that we would like to investigate briefly in this section. It is
interesting to note that some experimental observations and analytical models have specu
lated that an electric field may enhance or retard crack propagation initiated by the
application of mechanical forces. In this section we study, therefore, the case of the
piezoelectric solid subjected to a field in xrdirection and draw our attention to the
behavior of the stress component T" on r at the point e= O. Thus, from (45) we have
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2 3 .. { .ak l }T,,(O) = Tn (a, 0) = -b I ~ -[-
k~ I J.1.k

where by means of (31)

3413

(55)

(56)

where a31 is given by (52) with Ef = 0 and Er = Eo. Furthermore, we can show that (56)
is real and can be written as

-i ±akl = aK(c22
1

-so)':I.Eo
k~l J.1.k 2(Cir+2soC 11 )

where the number K = [.]/g is real and positive, and [.] represents the quantity in brackets
of (56). Therefore (55) becomes

(57)

If the piezoelectric solid is, in addition, subjected to remote forces, the corresponding
stresses can be added to (57) according to the principle of superposition. On this point, it
is useful to note that the sign of T,,(O) in (57) depends solely on the sign of Eo, since the
rest of the expression is positive. Thus, the electric field can increase or reduce the intensity
of the normal stress generated by say tensile forces applied in an independent manner. Due
to the implications of this effect it seems appropriate to investigate the order of magnitude
of the stress induced only by the electric field. To this end, we note that for piezoelectric
ceramics, the quantities involved in (57) have the following orders of magnitude: Cl j,

C22 ~ 108
, So- 10- 12

, '1- 1 and K ~ 108-109
• Hence, according to these values, the stress

induced by the field for aspect ratios in the range, say, 10- 2 < ':I. < I is given (in its most
critical condition) by

10 xEoT 22 (0) ~ ~~
':I.

(58)

That is, the more slender the ellipse, the larger the stress in accordance to physical intuition.
In some cases the value given by (58) may have a substantial incidence in the overall value
of the normal stress. For example, a field of 105 Vjm applied alone could induce a stress of
up to 100 MPa if the axes of the ellipse are in the ratio I j 100. Finally, notice that within
the framework of the impermeable model the stress is singular at the tip of a crack, while
bounded if So is retained.

With the expressions provided in the previous sections we could generate other inter
esting results. We refrain, however, of such exercises since they were not at the core of our
objectives.

8. CLOSURE

The problem of an elliptic hole embedded in a transversely isotropic piezoelectric solid
has been addressed within the framework of in-plane electro-elastic interactions. Contrary
to what has been common in the literature, exact electric boundary conditions have been
enforced at the rim of the hole. As a consequence, expressions for the electric variables are
provided not only in the material but within the hole as well. It has been shown that, as
predicted by other authors within simpler configurations, invoking the condition of electric
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impermeability at the boundary of the cavity may result into erroneous conclusions, which
become particularly relevant for the case of very slender ellipses or sharp cracks, where the
approximate theory predicts singular fields. When the domain of the hole is also taken into
consideration, it is seen that the fields at a crack tip are certainly large but bounded by the
permittivities of the material and gas enclosed by the hole. It should be emphasized that
despite the constraints of the model, regarding the orientation of the defect, the model
contemplates the most general coupling effects and material anisotropy. Furthermore,
despite the mathematical complexities inherent to these problems, the exact expressions
here provided are strikingly simple in form and are ready to be utilized in conjunction with
numerical and symbolic algorithms.
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